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PCB Layout-Based Spatiotemporal Graph
Convolution Network for Anomaly
Prediction in Solder Paste Printing
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Yang Cao , Member, IEEE, and Zhenyi Xu

Abstract— Predicting solder paste printing anomaly on the
printed circuit board (PCB) can improve first-pass yield and
reduce rework costs. Considering the impact of the PCB layout
on the quality of solder paste printing, we propose a PCB layout-
based spatiotemporal graph convolution network, in which we
construct a graph to model the spatial distribution of solder pads.
Specifically, since the printing quality is related to the spatial
distribution of the pads, we convert the PCB to a graph according
to the Pearson correlation of the printing quality and then trim
the edges of the graph with a correlation threshold to model the
spatial distribution of solder pads. To model the time-varying
physicochemical properties of the solder paste, normalize the
production time, calculate the attention of the production time,
and reconstruct the printing quality based on the attention. Then,
we devise a weighted loss to improve the performance of predicted
printing of defective products due to the scarcity of defective
products. Ultimately, the predicted printing quality is compared
with the inspection threshold to estimate the degree of anomaly.
The proposed method is validated on six days of real solder paste
printing data, improving the average F1 score by 0.057 and the
average accuracy by 0.022 for three typical anomalous printing
behaviors over two temporal prediction scales.

Index Terms— Solder paste printing, surface mount technol-
ogy, temporal anomaly prediction.
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I. INTRODUCTION

THE solder paste printing process is an essential step in the
assembly of the printed circuit board (PCB) [1], [2], [3].

This process establishes a permanent electrical and mechanical
connection between the component and the PCB [4], [5].
Solder paste printing anomaly is that the PCB does not meet
production standards during the solder paste printing pro-
cess. It has a significant impact on production efficiency and
costs [6], [7]. For a typical laptop manufacturer, solder paste
printing abnormalities account for basically 10% of the total
number of PCBs in the solder paste inspection. Approximately
50–70% of PCB defects are related to the solder paste printing
step, even passing the solder paste inspection [8], [9], [10].

To avoid solder paste printing anomaly, for economic and
time-sensitive reasons, the natural idea is to predict the
anomaly during production and adjust the solder paste printing
parameters according to the extent of the anomaly [11], [12],
[13], thus regulating the printing quality [14]. A good abnor-
mality prediction can sense solder paste printing abnormality
and the degree of abnormality in advance, preparing for the
subsequent adjustment of solder paste printing parameters.
This enables the advanced elimination of solder paste printing
anomalies. Therefore, as an important prerequisite for avoiding
solder paste printing anomaly, predicting solder paste printing
anomaly is a core issue.

The implementation of solder paste printing anomaly pre-
diction during production mainly utilizes the multivariate
time-series anomaly prediction technique. The existing mul-
tivariate time-series anomaly prediction methods [15], [16],
[17] mainly utilize the correlation among the variables and the
temporal characteristics of the variables for prediction, without
the need to predict the degree of anomaly. However, in solder
paste printing anomaly prediction, merely predicting whether
an anomaly will occur or not is not enough for subsequent
adjustment of the solder paste printing machine parameters.
Therefore, existing multivariate time-series anomaly prediction
methods are difficult to apply directly.

Current solder paste printing anomaly prediction methods
typically predict printing quality and then compare it to pro-
duction standards. There are two different typical application
scenarios. A typical scenario [18], [19] is that factories aim
to efficiently determine whether the set process parameters
will cause printing quality abnormality before production
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begins. Methods such as Taguchi methods [20] and mul-
tilayer perceptrons [21] are used to model the nonlinear
relationships between process parameters and printing quality.
Another typical scenario [22], [23], [24], [25], [26] that we
are concerned about is that factories want to predict printing
quality anomalies after production starts, to dynamically adjust
process parameters and avoid producing defective products.
In this case, time-series regression models such as SVR [23]
and LSTM [26] are used to analyze the temporal patterns of
solder paste printing quality, utilizing the temporal closeness
of solder paste printing to predict whether quality anomaly
will occur in the future. Alelaumi et al. [22] proposed a
new multitemporal intelligent anomaly prediction framework
to improve the first pass rate and reduce the rework cost
on PCB assembly lines. In the first phase, an exponentially
weighted moving average control chart based on the random
forest is designed to monitor the highly autocorrelated solder
paste printing process. In the second stage, statistical features
are designed based on quality-series data to predict solder
paste printing anomaly in advance through adaptive boosting
techniques. Wang et al. [26] introduced more powerful deep
learning algorithms rather than previous machine learning
algorithms. They used a combination of wavelet transforms
and LSTM to analyze real-time and historical printing per-
formance to predict future printing performance. Wang et al.
[23] attempted to predict the quality of solder paste printing
while adjusting the parameters of the solder paste printing
machine. The SVR model is utilized to predict the future
solder paste volume based on the real-time solder paste volume
and then the PSO algorithm is utilized to adjust the solder
paste printing parameters based on the predicted volume.
Thielen et al. [24] developed an automated machine learning
method to reduce model development time. This approach
leverages process data and historical quality information to
predict solder quality, specifically in terms of height, area,
and volume. Seidel et al. [25] introduced a scalable machine
learning-enabled framework for quality prediction in solder
paste printing. This framework parses details of the entire
production process and rapidly analyzes correlations between
inputs and printing quality.

However, the temporal pattern-based approaches tend to
focus on the apparent temporal closeness rather than the latent
spatial correlation. This may result in printing quality not
constrained by irregular PCB layouts, thus reducing predictive
performance. Spatial correlation is caused by neighborhood
similarity and local structure dependence. Neighborhood sim-
ilarity means that the variations in solder paste printing
quality of adjacent pads are highly correlated. Local structure
dependence means that similar pad layouts lead to higher
correlations, due to component pitch as one of the factors
influencing solder paste printing quality.

To model the effect of PCB layout on the variation of
solder paste printing quality, we propose a PCB layout-
based spatiotemporal graph convolution network, in which we
construct a graph to model the spatial distribution of solder
pads. Specifically, given that the solder paste printing quality
is correlated with the spatial distribution of pads on the PCB,
we construct a weighted graph that implies the spatial structure

Fig. 1. Process of solder paste printing.

by the Pearson correlation between the solder paste printing
qualities and then trim the edges of the graph by the correlation
threshold. Considering that the physicochemical properties of
the solder paste are time-varying [27], [28], [29], we attempt
to encode the effect of time on printing quality and normalize
time and then calculate the attention to time and reconstruct
the solder paste printing quality characteristics based on the
attention. Due to the scarcity of defective products in solder
paste printing, we devise a weighted loss to increase the weight
of defective products and promote the model to focus on
printing quality anomaly. Ultimately, the predicted printing
quality is compared with the inspection threshold to estimate
the degree of anomaly.

All in all, the main contributions of the proposed method
are summarized as follows.

1) For the solder paste printing anomaly prediction prob-
lem, this is the first time to analyze the significant impact
of irregular PCB layout on the solder paste printing
quality variation, strongly facilitating the understanding
of the problem.

2) To the best of our knowledge, this is the first work
to use graph modeling of the irregular PCB layout to
predict solder paste printing anomaly and is evaluated
on a six-day real solder paste inspection dataset. The
average F1 score improves by 0.057 and the average
accuracy improves by 0.022 for three typical printing
behavior anomalies over two time prediction scales.

II. OVERVIEW

A. Solder Paste Printing Process

Fig. 1 illustrates the solder paste printing process. The
squeegee covers the solder paste on the stencil, the mesh on the
stencil and the PCB pad correspond one by one, and the solder
paste through the mesh penetrates the pad. The following is a
breakdown of the solder paste printing process.

1) First is Stencil Preparation: A stencil is a thin sheet
of metal or polymer with openings or apertures that
correspond to specific locations on the PCB pads.

2) Then Comes the Alignment of the Stencil: Align and
secure the stencil to the PCB, ensuring that the apertures
are precisely aligned with the pads on the PCB. Next,
apply the solder paste to the stencil. According to the
printing parameters, solder paste is applied to one end
of the stencil and then pushed through the aperture by a
squeegee, depositing a controlled amount of paste onto
the PCB pads.

3) The Last is the Solder Paste Inspection: After applying
the solder paste, the stencil is carefully removed from
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Fig. 2. Curves of solder paste volume, X -direction offset, and Y -direction offset for four pads. Pads A and B are adjacent to each other. Pads C and A share
identical local structures. Pad D is further away from Pad A. (a) Pad distribution. (b) Solder paste volume curves for four pads. (c) Solder paste X -direction
offset curves for four pads. (d) Solder paste Y -direction offset curves for four pads.

the PCB. The PCB is then inspected for misalignment
of solder paste, insufficient or excessive solder paste,
or any defects in the printing process.

B. Influence of the PCB Layout on Solder Paste Printing
Quality

The positions of the pads are shown in Fig. 2(a). It can
be observed that Pad A is adjacent to Pad B, while Pad
D is located far away from Pad A. Pad C shares the same
local structure as Pad A. This is due to manufacturers often
employing a PCB panelization strategy, which involves print-
ing multiple identical PCBs simultaneously and then cutting
them along predetermined board cutting lines. The board
cutting line is depicted by the black dotted line in Fig. 2(a).
Due to size and resolution constraints, only two partial images
on either side of the board cutting line are shown here.
It should be noted that the board cutting line is included for
illustrative purposes only.

The influence of the PCB layout on solder paste printing
quality reflects the effects of neighborhood similarity and local
structure dependence. Specifically, Fig. 2(b)–(d) shows the
curves of solder paste printing volume, X -direction offset, and
Y -direction offset for four pads, respectively. It can be seen
that Pads A, B, and C exhibit similar trends in terms of three
solder paste printing quality attributes, while Pad D shows
some differences. This is because Pads A and B are neighbor-
ing and the printing quality variation follows the principle of
local similarity. Pads A and C exhibit identical local structures.
Component pitch is a critical factor influencing solder paste
printing quality. Therefore, despite their distance, and even if
they are not located on the same PCB, they exhibit similar
printing quality. Pad D shows some differences due to its
distance from Pad A, as well as local structural inconsistencies.

Fig. 3. Schematic of converting a PCB to a graph.

C. Definition

Definition 1 (PCB Layout Graph): As shown in Fig. 3, the
black areas in the red boxes are the pads, and in the solder
paste printing process, the solder paste will be printed to
the location of the pads. At time t , the PCB layout graph
G t = (Vt , A) has the pads in the red boxes of Fig. 3 as nodes,
and the green lines indicating the correlations of printing
qualities as edges. Vt = [x1

t , . . . , x M
t ] ∈ RM , Vt is the node

of the graph, M denotes the number of pads, and x i
t ∈ R,

i = 1, . . . , M , x i
t denotes the quality inspection feature of the

i th pad at moment t . A is the adjacency matrix obtained by
edge aggregation.

D. Problem Setting

Our task is to predict primarily whether future PCB solder
paste printing quality will be abnormal based on historical
PCB solder paste printing quality data and then to predict the
extent of the abnormality.

Given the graph representation of the PCB at the past N
production moments Gt1,tN = [G t1 , . . . , G tN ], the model f (·)
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Fig. 4. Framework of the PCB layout-based spatiotemporal graph convolution network for solder paste printing anomaly prediction.

is built to predict the printing quality of each solder paste of the
PCB at T future production moments, denoted as G̃tN+1, tN+T =

[G̃ tN+1 , . . . , G̃ tN+T ]. The formula is as follows:

G̃tN+1,tN+T = f
(
Gt1,tN

)
. (1)

Then, the predicted results G̃tN+1, tN+T are compared with the
production standard to identify whether and to what extent an
abnormality has occurred.

III. METHOD

A. Framework

Fig. 4 illustrates the framework of the PCB layout-based
spatiotemporal graph convolution network. It consists of three
main parts: PCB layout-based graph construction, temporal
reconstruction, and spatiotemporal graph convolution. The
PCB layout-based graph construction converts each PCB into
a weighted graph through solder paste printing quality cor-
relation to simulate the spatial structure of the PCB. Time
reconstruction builds self-attention according to time to recon-
struct PCB features to simulate the time-varying viscosity of
the solder paste. The spatial–temporal graph convolutional
network is employed to extract temporal closeness and spa-
tial correlation features of solder paste printing quality. The
proposed PCB layout-based spatiotemporal graph convolu-
tion network for solder paste printing anomaly prediction is
described in detail in the following.

B. PCB Layout-Based Graph Construction

Initially, we chose the Pearson correlation coefficient to
analyze the quality of solder paste printing. The formula is
as follows:

ci, j =

∑tN
t=t1

(
x i

t − µi
t1,tN

)(
x j

t − µ
j
t1,tN

)
σ i

t1,tN
σ

j
t1,tN

(2)

where X i
t1,tN

= [x i
t1 , x i

t1+1, . . . , x i
tN

] ∈ RN×1 denotes the set of
features of the i th solder paste from moment t1 to moment
tN . µi

t1,tN
is the mean of X i

t1,tN
and σ i

t1,tN
is the variance

of X i
t1,tN

.
Then, we introduce a threshold function Tλ (c) to prune the

edges of the graph and remove the association between them
when the correlation ci, j is less than λ . The threshold function
Tλ (c) is expressed as follows:

Tλ

(
ci, j

)
=


ci, j , ci, j ≥ λ and i ̸= j
0, ci, j < λ and i ̸= j
0, i = j .

(3)

From this, construct the adjacency matrix A

A =

 Tλ

(
c1,1

)
· · · Tλ

(
c1,M

)
...

. . .
...

Tλ

(
cM,1

)
· · · Tλ

(
cM,M

)
 ∈ RM×M . (4)

C. Time Reconstruction

Solder paste is one of the primary factors affecting printing
quality, and its physical and chemical properties change grad-
ually over time. Therefore, we need to consider the impact of
time on printing quality. Let the real production time vector
t = [t1, t2, . . . , tN ] ∈ R1×N , first the vector t is normalized,
and the formulation is as follows:

ṫ i =
ti − t1
tN − t1

, i = 1, . . . , N . (5)

The normalized production time vector ṫ =

[ṫ1, ṫ2, . . . , ṫ N ] ∈ R1×N is obtained. To model the effect
of production time on solder paste printing quality, temporal
attention is calculated by production moments and the solder
paste printing quality features are reconstructed in a weighted
form derived from temporal attention.

Encoding the normalized production time vector ṫ

ek = W1 ṫ + b1 ∈ Rd×N (6)
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eq = W ′

1 ṫ + b′

1 ∈ Rd×N (7)

where W1 ∈ Rd×1, b1 ∈ Rd , W ′

1 ∈ Rd×1, b′

1 ∈ Rd are trainable
parameters, and d denotes the encoding dimension.

Calculate the temporal attention matrix Att of the production
time with the following equation:

Att = LeakyRelu
(
ek

T W T
k

)
LeakyRelu

(
Wqeq

)
(8)

where Wk ∈ Rd×d and Wq ∈ Rd×d are trainable parameters.
Then, softmax is used to constrain Att to convert the atten-

tion score between solder pastes into a probability distribution
between [0, 1] while highlighting the relationship between
solder pastes

Att′i, j =
exp

(
Atti, j

)∑N
j=1 exp

(
Atti, j

) . (9)

Lastly, the attention matrix Att′ obtained is used to recon-
struct the feature X i

t1,tN
for the i th paste from moment t1 to

moment tN

X i ′

t1,tN
= Att′ X i

t1,tN
(10)

where X i ′

t1,tN
= [x i ′

t1 , . . . , x i ′

tN
] ∈ RN×1, X i ′

t1,tN
denotes

the reconstructed temporal solder paste printing features,
and the reconstructed features are constructed into a graph
G ′

t = (V ′
t , A), V ′

t = [x1′

t , . . . , x M ′

t ] as the input to the
spatial–temporal graph convolution.

D. Spatiotemporal Graph Convolution

For solder paste printing quality anomaly prediction, the
PCB of each production moment is represented by a graph,
and the continuously produced PCBs constitute the spatiotem-
poral graph. To capture the spatial correlation and temporal
closeness of the solder paste printing quality, a spatiotemporal
graph convolution module is constructed. As shown in Fig. 4,
each spatiotemporal graph convolution module consists of two
gated CNNs, a GCN, and a batch normalization layer.

The gated CNN learns the quality variation pattern of a
single solder paste in the time dimension, expressed as follows:

Y i
c =

(
Wc1 ∗ X i

c + bc1
) ⊗

σ
(
Wc2 ∗ X i

c + bc2
)

(11)

where Wc1 and Wc2 are convolution kernels, bc1 and bc2 are
biases, they are all trainable parameters, σ is the nonlinear
activation function sigmoid,

⊗
is the product of elements

between matrices, X i
c denotes the input of layer i gated CNN,

and Y i
c denotes the output of layer i gated CNN.

The GCN mines the correlation of printing quality variation
patterns among solder pastes, as shown in the following
equation:

Y i
g = gθ ∗G X i

g = gθ (L)X i
g

= gθ

(
U3U T )

X i
g = Ugθ (3)U TX i

g (12)

where gθ is the kernel, ∗G is the graph convolution operation,
L is the normalized Laplacian matrix X i

g denotes the layer i
GCN input, and Y i

g is the layer i GCN output

L = IM − D−
1
2 AD−

1
2 = U3U T

∈ RM×M (13)

where U is the matrix of eigenvectors of regularized adjacency
matrix L and Di i =

∑
j Ai j . Due to the high operational

complexity, the above equation needs to be simplified

Y i
g = gθ ∗G X i

= gθ (L)X i
g ≈

K−1∑
k=0

θk Tk
(
L̃
)
X i

g (14)

where Tk(L̃) is the kth-order Chebyshev approximation of
L̃ = (2L/λmax) − IM . λmax is the maximum eigenvalue of
L . Assume further that λmax ≈ 2

Y i
g ≈ θ0X i

g + θ1(L − IM)X i
g

≈ θ0X i
g − θ1

(
D−

1
2 AD−

1
2

)
X i

g . (15)

Let θ0 = −θ1, then

Y i
g ≈ θ0

(
IM + D−

1
2 AD−

1
2

)
X i

g ≈ θ0 D̃−
1
2 ÃD̃−

1
2X i

g (16)

where Ã = A + IM and D̃i i =
∑

j Ãi j .

E. Loss Function

Let the output of the last layer of the gated CNN be Y5
c ,

and the final output is obtained after the fully connected layer

G̃ = σo
(
W fY5

c + b f
)
. (17)

Our goal is to perceive the anomaly in advance by accurately
predicting the solder paste printing quality. Considering that
the abnormal samples of solder paste printing quality are much
less than normal samples, the weight of abnormal samples
must be increased to prevent spurious low error indicators, and
here the weighted average absolute error LWMAE is designed

LWMAE =
1

T M

∑
t

∑
i

ωN
(
1 − C t

i

)∣∣yt
i − ỹt

i

∣∣ + ωPC t
i

∣∣yt
i − ỹt

i

∣∣
(18)

where C t
i is the i th solder paste quality category label at

moment t , abnormal label is 1 and normal label is 0, yt
i is the

i th solder paste quality at moment t , ỹt
i is the corresponding

predicted value, ωP is the category weight of the abnormal
sample, and ωN is the category weight of the normal sample.

The total loss function is as follows:

L = LWMAE + µ∥θ∥2 (19)

where θ is the model parameters and µ is the hyperparameter.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Settings

1) Dataset Description: Following the solder paste printing
process, there is a potential for misalignment in both the
X - and Y -directions relative to the PCB pads. In addition, the
deposited volume may deviate from the specified standard.
Consequently, it is crucial to inspect the printing results.
We collected six days of solder paste printing inspection
data from the production line and obtained 11 365 available
inspection records after data cleaning. Each PCB contains
3152 pad inspection results, and each inspection result contains
solder paste volume, solder paste offset in the X -direction,
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TABLE I
EXPERIMENTAL HYPERPARAMETERS

solder paste offset in Y -direction, and other inspection con-
tents. We select three typical abnormalities for detection:
insufficient solder paste, X -direction position offset defect,
and Y -direction position offset defect. PCBs with insufficient
solder paste accounted for 18.79% of the total samples, PCBs
with Y -direction offset defects accounted for 1.29%, and PCBs
with X -direction offset defects accounted for 0.25%. To reduce
the oscillation of the network, we convert the raw data in
percentage form to decimals. A sliding window is used to
process the data, setting the window size to 40, the sliding
step size to 1, and the prediction window size T to 1 or 5.
The 65% of the data is divided into the training set and the
35% into the test set.

2) Experimental Metrics: The F1 score and accuracy are
chosen to measure the model performance. The F1 score
is an overall measure of the model’s miss and false alarm
rates for solder paste printing defects. The F1 score is in the
range of [0, 1]. When the F1 score is 1, it means that the
model achieves perfect performance in predicting solder paste
printing anomaly. When the F1 score is 0, it means that the
model breaks down and completely fails to predict solder paste
printing anomaly.

To calculate the F1 score, we introduce true positive (TP),
true negative (TN), false positive (FP), and false negative (FN).
Details of TP, TN, FP, and FN are shown below.

1) TP: The number of defective products that are accurately
predicted.

2) TN: The number of qualifying products that are accu-
rately predicted.

3) FP: The number of qualifying products that are incor-
rectly predicted to be defective.

4) FN: The number of defective products that are incor-
rectly predicted to be qualified.

As shown in (20), the Recall measures the miss alarm rate.
The Precision measures the false alarm rate as shown in (21).

The F1 score is a combination of Recall and Precision

Recall =
TP

TP + FN
(20)

Precision =
TP

TP + FP
(21)

F1 =
2 · Recall · Precision
Recall + Precision

. (22)

3) Experimental Hyperparameters: Regularization factor µ

is 0.002, and the category weight ωN of the normal sample
is 1. The batch size is 32 and the learning rate is 0.001. The
training epoch is set to 80. Other hyperparameters are shown
in Table I. Our method is implemented in a high-performance
server with GeForce RTX 3090TI GPU.

4) Baselines: To ensure fairness and to prove the validity of
our method, the following methods are chosen for comparison.

Each experiment is repeated fivefold, and then the mean and
standard deviation are calculated.

1) IAP [22]: Manual design features with adaptive boosting
technology to predict defective solder paste printing.

2) DTCWT-LSTM [26]: The original solder paste print-
ing quality data is filtered and reconstructed using the
dual-tree complex wavelet transform, and then manual
features are devised as input to the LSTM for prediction.

3) GRU-Single [30]: Quality prediction is performed by
entering solder paste printing quality data for a single
pad at a time into the GRU. The predicted results are
then compared with the detection threshold for anomaly
detection.

4) GRU-Global [30]: Based on the overall historical data
of solder paste printing quality, the GRU is utilized to
simultaneously predict the solder paste printing quality
of the entire PCB. The predicted results are then checked
against the detection standard for anomaly detection.

5) LSTM-Single [31]: Quality anomaly prediction using
LSTM by inputting solder paste printing quality data
for a single pad at a time. The predicted results are
then compared with the detection threshold for anomaly
detection.

6) LSTM-Global [31]: Simultaneously predict the entire
PCB solder paste printing quality based on the overall
historical solder paste printing quality data utilizing
LSTM. The predicted results are then checked against
the detection standard for anomaly detection.

7) 2-DConvLSTMAE [32]: The quality prediction is per-
formed by using ConvLSTM to learn the temporal
closeness of time series and the spatial relationship of
gridding, and then the prediction results are compared
with the detection standards for anomaly detection.

8) MRFGCN [33]: A multireceptor field graph convo-
lutional network for anomaly diagnosis uses multiple
receptive fields to learn anomalous features and fuses
the learned features for feature enhancement. We use
the three receptive fields recommended in this article.

9) SegRNN [34]: For long-time prediction, a segmented
RNN network employs a strategy of segmented iteration
and parallel multistep prediction, thereby improving
prediction accuracy and inference speed.

10) FCSTGNN [35]: For temporal prediction, a fully con-
nected spatiotemporal graph neural network uses fully
connected graph convolution with a moving pool GNN
layer to efficiently capture spatiotemporal dependencies
to learn efficient representations.

B. Experimental Results

1) Comparison With Baseline Methods: Table II shows
the experimental results of the baselines and our method
in predicting solder paste insufficiency, X -direction position
offset defects, and Y -direction position offset defects at differ-
ent periods. IAP, DTCWT-LSTM, GRU-Single, GRU-Gloabl,
LSTM-Single, LSTM-Gloabl, 2-DConvLSTMAE, MRFGCN,
SegRNN, FCSTGNN as well as our method, the average
F1 scores for the three typical types of defects under two
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TABLE II
EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON THREE SOLDER PASTE ANOMALIES

Fig. 5. Time-series prediction of solder paste printing quality for a single pad. (a) Solder paste volume prediction curve. (b) Solder paste Y -direction position
offset prediction curve. (c) Solder paste X -direction position offset prediction curve.

different time scales are 0.216, 0.101, 0.215, 0.218 0.235,
0.220, 0.114, 0.254, 0.203, 0.206, and 0.311. Our approach
improves F1 score by at least 0.057. Also, our method
achieves the best F1 score in all six scenarios. The average
Accuracy of the above methods in different scenarios is 0.751,
0.059, 0.843, 0.671, 0.865, 0.712, 0.375, 0.899, 0.680, 0.498,
and 0.921, respectively. Our approach improves Accuracy
by at least 0.022. This demonstrates the important role of
solder paste printing quality variation spatial correlation in
the prediction of solder paste printing abnormality. It can also
be found that MRFGCN with a graph structure achieves the
second-best performance among all methods to our method.
This proves that modeling the PCB layout as a graph helps to
improve the prediction of defects.

It can be discovered that our method is significantly better
than the baseline methods in predicting the defective produc-
tion effectively in terms of X -direction position offset defects
and solder paste insufficiency, while all methods perform
poorly on Y -direction position offset defects. The reasons
for these are shown in Fig. 5. The predictions of solder
paste volume, Y -direction offset, and X -direction offset during
solder paste printing are shown sequentially in Fig. 5. The red
regions in Fig. 5 indicate defects exceeding the set threshold
values. After data desensitization, the threshold for solder paste

insufficiency is 40%. The qualifying interval for X -direction
and Y -direction offsets is [−25%, 25%]. As can be seen from
the time-series curves of solder paste offsets in the Y -direction,
these offset defects are mainly caused by severe jitter. There-
fore, it is difficult to track the deterioration trend, resulting
in poor model performance. Observing the time curves of
solder paste volume and X -direction offset, significant trend
changes are apparent during defect occurrences. Thus, our
approach achieves effective predictive outcomes. Furthermore,
the X -direction offset values are larger in the early stage, so the
predicted values are also slightly larger to accurately predict
the offset defects. When the X -direction offset value decreases
at a later stage, the predicted value follows immediately. This
demonstrates the ability of our method to capture the trend of
quality change.

2) Estimated Extent of Anomaly: To provide engineers with
information on the extent of solder paste printing anomaly,
we classify the extent of solder paste printing anomaly into
levels. As shown in Fig. 6, taking solder paste printing
insufficiency as an example, we classify three levels, qualified,
slight insufficiency, and severe insufficiency. The qualified
product is solder paste volume greater than 40%, the interval
for slight insufficiency is [20%, 40%], and severe insuffi-
ciency is [0, 20%]. In Fig. 6, it can be seen that there are
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Fig. 6. Predictive effect of different levels of anomalies for the solder paste
volume.

3520 good products, three slight solder paste insufficiencies,
and 74 severe solder paste insufficiencies that are correctly
predicted. Our model achieves better prediction results for the
level of defective products. But at the same time, it can also
be seen that there are 107 slight insufficiencies and 82 severe
insufficiencies that are incorrectly predicted as good products.
The reason for the prediction error of solder paste slight
insufficiency may be that slight out-of-qualification ranges can
make it difficult for the model to predict accurately. For severe
insufficiency, it can be seen from Fig. 5(a) that there exists a
lot of solder paste volume abrupt change to 0. For the factory,
it is important that we already successfully predict the trend of
deteriorating quality and thus adjust the parameters to reduce
defective products.

3) Approaches Complexity Analysis: We compare the com-
putational cost of our method with other baseline methods
on the same GPU server, where all library versions are kept
constant. In Table III, the training time is the time to train one
epoch on the training set on a single GPU when the prediction
window T = 1. The testing time refers to the inference time
for the entire test set of about 4000 samples. Our model
has the seventh-highest training time out of ten models and
the eighth-highest testing time. This is because to achieve
higher performance, the model becomes more complex, thus
slightly sacrificing training time and testing time. In practical
applications, the training time reflects the time cost required to
build the model. For four days of production data, our model
spent 71 s per epoch and trained a total of 80 epochs, which
is about 1.5 h. A ratio of 96/1.5 between production data
time and training time is acceptable. In practice, the test time
reflects the real-time performance of the model. Each time
a PCB is printed, the model makes an inference prediction.
Therefore, the model’s single inference time needs to be
smaller than the PCB printing interval to meet the practical
requirements. For a single test sample, it takes only about
0.005 s for our model to give a prediction result. According to
our research in the factory, the interval of solder paste printing
is about 15 s. Thus, the real-time performance can fully meet

TABLE III
MODEL COMPLEXITY

the demand. The model parameters reflect the storage costs
incurred in model construction, and our model is positioned
in the middle tier. Our model can still fit within the memory
of a single GPU, without causing excessive hardware costs.

4) Ablation Experiments: To analyze the role played by the
different components of our method in anomaly prediction,
we designed three different variants by removing some of the
components and observing the prediction performance of the
remaining parts.

1) Variant-NTA: To verify the effect of production time
interval on solder paste printing quality, we remove
the attention based on production time and the rest is
consistent with our method.

2) Variant-NGCN: To verify the effect of modeling the
PCB layout as a graph on the quality of solder paste
printing, we remove the GCN module and the rest is
consistent with our approach.

3) Variant-NGatedCNN: To verify the effect of the tem-
poral module on the prediction of solder paste printing
quality, we remove the gated CNN module and keep the
rest in line with our approach.

The results are shown in Table IV. It shows that the intro-
duction of attention based on production time significantly
improves the prediction of defective products, especially in
the defective X -direction position offset, where Variant-NTA’s
F1 score is 0.412 when the prediction window T = 5, while
our design of production time-based attention improves the
F1 score to 0.521. The standard deviation of the predic-
tive metrics is also generally reduced, which improves the
stability of the model. This suggests that production time-
based concerns capture the effect of production time on
the quality of solder paste printing, specifically referring to
the gradual change in the physicochemical properties of the
paste, such as viscosity, over time. The average Accuracy of
Variant-NGCN is 0.725 and the average F1 score is 0.243,
which shows a significant decrease compared to our method’s
average Accuracy of 0.921 and average F1 score of 0.311.
This proves the necessity of modeling the graph structure
based on the PCB layout, which can effectively improve the
prediction. The average Accuracy of Variant-NGatedCNN is
0.791 and the average F1 score is 0.234. Since we use real
time-series production data for PCB solder paste printing
defects prediction, the temporal module is responsible for
extracting the temporal evolution pattern in the production
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TABLE IV
ABLATION EXPERIMENTAL RESULTS

Fig. 7. Solder paste printing anomaly prediction correlation threshold sensitivity analysis. Fixed abnormal sample weights ωP and adjusted correlation
threshold. (a) Correlation threshold sensitivity in volume attribute. (b) Correlation threshold sensitivity in X -Offset attribute. (c) Correlation threshold sensitivity
in Y -Offset attribute.

Fig. 8. Solder paste printing anomaly prediction abnormal sample weight sensitivity analysis. Fixed correlation threshold λ and adjusted abnormal sample
weight. (a) Weight sensitivity in volume attribute. (b) Weight sensitivity in X -Offset attribute. (c) Weight sensitivity in Y -Offset attribute.

data, which has an important impact on the prediction
results.

5) Hyperparameters Analysis: Fig. 7 illustrates the effect of
the solder paste printing quality correlation threshold on the
anomaly prediction ability of the model when T = 5. We fix
the weights of the abnormal samples, adjust the correlation
threshold, and repeat the experiment five times. In Fig. 7,
the green triangle represents the mean of the F1 scores
and the orange line represents the median. The prediction
of solder paste insufficiency is significantly more sensitive
to the correlation threshold compared to the prediction of
X -direction position offset defects and Y -direction position
offset defects. This is because the X -direction position offset
has a higher global correlation due to the PCB along the
X -direction into the solder paste printer. The Y -direction
position offset defects exhibit abrupt characteristics. Existing
methods perform poorly in detecting these defects, resulting
in the correlation threshold having minimal impact on the
experimental results.

Fig. 8 shows the effect of the abnormal sample weight on
the experimental results when T = 5. We fix the correla-
tion threshold, adjust the abnormal sample weight ωP , and
repeat each experiment five times. Compared to the correlation

threshold, the model is insensitive to abnormal sample weight
ωP within a certain range. In the anomaly prediction of solder
paste insufficiency, the anomaly sample weight ωP has a stable
good performance in the interval [40, 200]. In the X -direction
position offset defect prediction, anomaly sample weight in
[100, 750] can achieve a better prediction. Better prediction
can be achieved in the Y -direction position offset defect
prediction with anomaly sample weight ωP in the interval
[100, 225] as well. The abnormal sample weight is usually
related to the percentage of abnormal samples in the total
sample, the higher the percentage, the lower the abnormal
sample weight, for example, the abnormal sample weight
of insufficient solder paste is significantly lower than the
abnormal sample weights of X -direction position offset defects
and Y -direction position offset defects, and the frequency of
insufficient solder paste is also much higher than them.

V. CONCLUSION

In this article, we propose a PCB layout-based spatiotem-
poral graph convolution network for solder paste printing
anomaly prediction. Compared with other methods, our
method fully considers the spatial correlation of the variation
of solder paste printing quality and can effectively predict the
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defective products in the solder paste printing process, thus
helping engineers to reduce the defective products and improve
production efficiency.

Since many reasons can cause solder paste printing quality
abnormality, in the future, we will analyze potential causes of
printing anomaly, such as warpage/shrinkage, based on pre-
dicted printing quality anomaly as well as available conditions
including the state of the solder paste printing machine and
process parameters. Furthermore, in response to the identified
anomaly causes, the solder paste printing machine parame-
ters are dynamically adjusted to eliminate defective products
during the solder paste printing process.
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